1.3 Predator-fishery overlap and predator performance

Southwest Fisheries Science Center Antarctic Ecosystem Research Division TOR QUESTIONS: 4, 5

1.6 Synthesis

1.2 & 1.3 Background

Why overlap of predators and the fishery?

- Estimation of functional responses of predators to changes in krill biomass has been elusive
 - Such data represent a more traditional approach to ecosystem based fisheries management

- Overlap demonstrates interactions on spatiotemporal scales relevant to predator performance and fisheries management
 - Indicates where risk could be greatest

Predator location data, 2009-2014

Overlap is extensive in space and in depth

Predators in an ecosystem context: Environmental, bottom-up, and top-down drivers

Generalized life cycle guides inference

Environmental drivers are important

Phenology sensitive to temperature

Reproductive success sensitive to phenology

Environmental drivers are important

Sea ice correlated with survival

Environmental drivers are important, but insufficient

Mid-winter distributions

Bottom-up: Availability of primary prey is key

Bottom-up effects manifest in a variety of ways

Top-down impacts also evident

- Anecdotally in penguins:
 - Observed complete loss of small colonies due to avian predation
 - Models describing population dynamics perform best with depensatory dynamics (Hinke et al. 2008, Watters et al. 2013)
 - Carcass accumulation on beaches at the end of the breeding season (leopard and fur seal predation)

Meta-analysis: an integration of monitoring data

Does predator performance vary with changes in krill biomass or local harvest rates?

Data from 3 species at 2 sites

Winter responses:

- relative cohort strength
- male mass at lay
- female mass at lay
- lay date
- mean egg density

Summer responses:

- post-hatch success
- trip duration
- fledging mass

Bayesian ANOVA based on "order of magnitude" estimates of krill catch and biomass

Compare standardized response values observed under different conditions of krill catch and biomass

Penguin performance linked to krill biomass

Observed effects of krill fishing

Answers to TOR questions

- 4. AERD has worked hard to maintain long-term data sets necessary for advising on ecosystem-based fisheries management. These data are front-and-center in current efforts to establish management strategies for the Antarctic krill fishery and have been used previously to set the template for current fishing management.
- 5. At present, new ecosystem-based management strategies that use AERD data sets are in development.

Other approaches to extend reach, fills gaps, and minimize footprint

- Photography and photogrammetry
 - Time-lapse systems
 - Calibration studies
 - CEMP network
 - Winter attendance
 - Unmanned aerial systems
 - Aerial abundance surveys
 - Focal individual mass, condition
 - Animal borne video
 - Foraging specialization
- Mark-recapture studies
- Animal-borne CTD tags for oceanographic observations

- Predator diet and foraging ecology
 - Diets, scats, stable isotopes (bulk and compound-specific), fatty acid analyses, and calorimetry
 - Integrated 3-D tracking, radio telemetry
- Population genetics
 - DNA archives
- Persistent organic pollutants and heavy metals in the food web
- Tooth-ageing to reconstruct demographics
- Otolith records from diet studies

STRENGTHS

- Long-term data sets
- Consistent standardized methods
- Adaptive to change
 - e.g., Copa field ops
- Collaborations
 - International (Chile, Argentina, Poland, Australia, Ukraine, U.K., Italy, Canada, etc.)
 - National (LSU, UCSC, UNCW, Pomona College, UCSD, etc.)
- 2 field camps dedicated to long-term studies

CHALLENGES

- Integration of data sets (data basing)
- Modernizing observation techniques (instruments, bands, etc.)
- Direct engagement of our data in management decisions
- Maintaining 2 field camps

OPPORTUNTIES

- Moving beyond local indices to regional understanding
- EBFM based on monitoring data
- Informing spatial planning (e.g., MPA development) in the Southern Ocean

